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1 Introduction

�e public release of full-count decennial census microdata from 1790-1940 has increased the

quantity and quality of research studying trends and policies in the United States during these

periods. Much of this work uses state- or county-level data (e.g., Aaronson and Mazumder, 2011;

Donaldson and Hornbeck, 2016; Desmet and Rappaport, 2017) or focuses on a small number of

counties or large cities where researchers have detailed sub-county microdata (e.g., Michaels,

Rauch, and Redding, 2012; Shertzer, Walsh, and Logan, 2016; Brooks and Lutz, 2019; Fishback

et. al, 2020; Aaronson, Hartley, Mazumder, 2021). One reason for this geographic focus is data

availability: commonly-used historical datasets only consistently identify states, counties, and

large cities. However, states and counties cover broad geographic areas and contain important

heterogeneity in demographics, policies, and access to local amenities; while larger cities can be

systematically di�erent from their smaller peers. In this paper, we use a new method to construct

consistent measures of place for U.S. residents in the 1790—1940 decennial censuses. We create

a crosswalk that allows researchers using public or restricted decennial census microdata to link

respondents to consistently de�ned sub-county locations.1

To construct these links, we clean and analyze raw place names from census manuscripts

corresponding to cities and townships. A�er we identify all unique places within a given decade

of census microdata, we iterate through the strings to identify a standardized location name and

latitude/longitude. To do this, we match strings to geocoded places in NHGIS historical place

point �les, GNIS place �les, and Google Maps.2 When location strings are not reported or found,

we are o�en able to exploit the existence of nearby enumeration districts to impute an accu-

rate sub-county location. A�er we perform these steps for every census year in our sample, we

standardize place names and locations across years to make our locations temporally consistent.
1We de�ne a sub-county location as any location at a �ner geography than county borders, not o�cial Census

sub-county areas.
2For more details about NHGIS place point �les, see Manson et al. (2021). For more details about the GNIS place

�les, see United States Geological Survey (2021).
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Relative to publicly available datasets, we map many more people to sub-county locations.

We match an average of 83% of the individuals and households in 1790–1940 census microdata to

the longitudes and latitudes of their cities and towns of residence, compared to 23% in currently

widely-used crosswalks. In years with individual-level microdata (1850–1940), our average match

rate is 94% relative to 33% in widely-used crosswalks. In 1870 (the year where we obtain our best

match rate), we geocode 99.1% of individuals relative to 19% in public crosswalks.

We highlight the value of our new place data with two applications. First, we take the 69,393

unique geocoded places from our census microdata crosswalks covering 1790-1940 and we it-

eratively cluster these places into 42,133 consistently-de�ned places over time. Our clustering

approach is informed by the closeness and size of neighboring places and addresses the fuzziness

of �xed place de�nitions both over time and across borders. Our clusters account for shi�ing

place borders, annexations, subsumed suburbs, and ghost towns. We include these clusters as

variables in our crosswalks, providing other researchers with a data-driven de�nition of local

metropolitan areas.

Next, we link our clusters to census microdata and create granular measures of place-level

population growth over time. We show that our clustered places consistently follow Zipf’s Law

and Gibrat’s Law for large cities in historical time periods, matching predictions from theory

and modern-day empirical contexts (e.g., Gabaix 1999; Ioannides and Overman 2003; Giesen and

Sudekum, 2011). We also �nd sharp deviations from Zipf’s Law and Gibrat’s Law for small places.

To the best of our knowledge, we are the �rst to document these pa�erns for smaller places

across the entire U.S. in a historical context, since prior historical work focuses only on large

cities, county-level pa�erns (eg. Desmet and Rappaport, 2017), or a small subset of states with

high-quality sub-county data (Michaels, Rauch, and Redding, 2012).3

Our work builds on past e�orts to digitize, standardize, and improve the usability of the com-

plete count census �les. In particular, IPUMS sta� have standardized large portions of the histor-
3For a review of prior historical work on city growth rates in a historical context, embedded in a larger discussion

of historical urban economics, see Hanlon and Heblich (2021).
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ical census enumeration sheets and created variables for many common �elds that researchers

commonly use (Ruggles et. al, 2021). Public IPUMS data generally identi�es only larger cities,

though the e�ective city-size thresholds vary over time.4 Our approach is informed by e�orts

like the Census Linking Project, which provides public census data users a crosswalk that allows

them to link census respondents across time, a process that otherwise would require access to

restricted census data (Abramitzky, Boustan, and Rashid, 2020).

Many papers (including our own prior work) use raw census strings to de�ne sub-county

areas that are smaller than IPUMS-provided cities for subsets of the historical censuses.5 For ex-

ample, Karger (2021) and Berkes and Nencka (2021) develop string cleaning methods to identify

small cities and towns that had Carnegie libraries in the early 1900s. Michaels, Rauch, and Red-

ding (2012) standardize sub-county areas in the 1880 census and link these areas to 2000 data to

study long-run trends in population dynamics.6 Nagy (2020) standardizes cities in the 1790 to

1860 censuses to study city formation and the e�ects of transportation infrastructure. Feigen-

baum and Gross (2021) clean city names with more than 2,000 people from 1910 to 1940 to track

information on telephone operators. O�erstrom, Price, and Van Leeuwen (2021) use linked cen-

sus records from 1900–1940 to measure changes in city population size for the 1,000 largest cities

in 1900. Connolly (2021) digitizes locations in the 1920 census to study the impact of two-year

colleges on children’s adult outcomes. To our knowledge, we are the �rst to standardize raw loca-

tion strings for the universe of all available full-count census data, allowing us to use information

across census years to improve the accuracy of matches. Moreover, we identify additional sub-

county locations for observations with missing or uninformative strings by relying on nearby,

sequentially numbered enumeration districts. Finally, by releasing our crosswalks and associ-
4See the IPUMS documentation for a detailed description of the IPUMS CITY variable, which is the primary

temporally consistent source of sub-county place information in publicly available Census microdata. We describe
the IPUMS standardization more fully and compare our mapping to theirs in Section 3.1. For 1940, IPUMS recently
released a more comprehensive city variable that captures more (but not all) of the locations that we geocode. �is
variable is named PLACENHG in the public 1940 data and is constructed using NHGIS place �les.

5It would be di�cult to highlight every paper that used sub-county historical variation. In this section, we
highlight a number of illustrative examples.

6�ese areas are also used in Hodgson (2018) to study the e�ects of the railroad on population growth.
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ated time-consistent clusters, we give all researchers the ability to study sub-county trends and

policies while reducing duplicated e�ort in the research community.

Relative to publicly released census data, our added value is highest when studying rural ar-

eas or smaller locations adjacent to nearby cities. By contrast, we do not a�empt to geocode

within-city locations like addresses or neighborhoods, which are the subject of recent valuable

exercises focused on larger cities (e.g., Logan et. al 2011, Shertzer, Walsh and Logan, 2016; Fish-

back et. al, 2020; Brooks and Lutz, 2019; Aaronson, Hartley, Mazumder, 2020). Sub-city geocoding

requires historically accurate street layouts, which makes it di�cult to apply to smaller or rural

areas. In recent work, Ferrara, Testa, and Zhou (2022) construct population-based crosswalks of

countries and congressional districts using backward-looking population projections. Our work

complements their contribution: we focus on matching individuals to geocoded places using con-

temporaneous location information, allowing researchers to use individual microdata to measure

area characteristics. We do not a�empt to model the entire geographic population distribution.7

While our focus is historical U.S censuses, our methods apply more broadly. Our publicly-

accessible programs provide a consistent and automatic methodological approach to geocoding

and clustering townships, cities, and unincorporated places. We hope that these methods will

be useful in other contexts where researchers need to assign geocodes to historical documents

that contain location strings. For example, U.S patents include the city, state, and county of

inventors, and birth certi�cates o�en include detailed birth locations. Our methods provide an

easily applicable framework for geocoding locations in these documents.

�e rest of the paper is structured as followed: in Section 2 we discuss our geocoding proce-

dure. In Section 3 we compare our geocode coverage to existing census data and show an illus-

trative example of how to use our data. In Section 4 we discuss how to implement our method in

other applications which involve sub-county data. In Section 5 we conclude.
7Ferrara, Testa, and Zhou (2022) discuss both the bene�ts and limits of their approach in Section 4 of their paper.
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2 Method

In this section, we describe the method that we use to geocode the historical censuses. We discuss

our approach with reference to the information available in in the US census, though as we discuss

in Section 4 many of the steps below will be similar for any data involving historical locations.

We begin by identifying all the geographic information available in IPUMS’ raw decennial

census data from 1790–1940. �ese variables represent raw text strings and in some cases IPUMS-

standardized place names. �e data includes between one and six raw location strings each year

along with contemporary county and state identi�ers.8 �ese text strings are sometimes broad

(eg. “New York City”), but o�en contain granular information about places (eg. “District 83, Beebe

Volborg”).

We clean the text strings by applying a standardized set of criteria, described in more detail in

our Data Appendix. To summarize these steps, we standardize common pre�xes, remove punc-

tuation, remove common words (like “justice ward” or “courthouse”), and standardize cardinal

directions when they refer to an explicit quadrant of a town or city. For example, the text string

“Precinct 10, Aubrey [30] & Precinct 6, South Side [11]” is cleaned into the location “Aubrey.”

Next, we a�empt to geocode all of our clean place names in several steps, relying on histor-

ical spatial databases from IPUMS National Historical Geographic Information System (NHGIS)

and �e Geographic Names Information System (GNIS). NHGIS contains the locations of incor-

porated and unincorporated places used by the U.S. Census Bureau from 1900 onward. GNIS is

the U.S. Board on Geographic Names’ consistent database of places, maintained by the federal

government. We iterate over the raw census location strings, starting with the most granular

place name and then using less granular place names if we cannot make a match.

For 1900–1940, we take each cleaned census place and its associated county in historical data,

and we look for the most similarly named place in NHGIS that is in the correct historical county.In

most cases, we use county and state maps corresponding to the relevant census year. However,
8For a full list of the variables we use, see our Data Appendix.
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we have a penultimate round of matching that uses 1910 counties as our reference geography.

�e standardized census data uses some county or state names before they were o�cial (e.g.,

West Virginia in 1860). �is additional step reduces false negative matches. We require that the

census and NHGIS strings have a match score of 0.95 to identify accurate matches.9 If we cannot

�nd a match, we then perform the same search within the GNIS place data, looking for matches

to di�erent feature types, ranging from populated places to post o�ces and valleys. For any

unmatched census places a�er this step, we search NHGIS and then GNIS for place names in the

correct county that have an edit-distance of 1 with our census place. Finally, we remove cardinal

directions and look again for places in the NHGIS and GNIS �les with a match score of 0.95.

Our strategy for geocoding the 1790–1880 census years is similar to our process for 1900-1940.

However, since NHGIS historical place points are not available before 1900, we only use the GNIS

place �le to match census strings to place names. Otherwise, we use identical approaches.

Once we have initial geocodes for all census years from the NHGIS and GNIS �les, we com-

plete four �nal steps to increase match rates and standardize geocodes. First, we impute coor-

dinates for places in enumeration districts when another named place within that enumeration

district was successfully geocoded. Second, we impute coordinates for enumeration districts that

are numerically between two successfully geocoded, nearby enumeration districts. �ird, we

search Google Maps for all unmatched places. We use the Google Maps latitude and longitude if

it falls within the correct historical census county. Lastly, we compare across census years and

standardize the spelling of matched place names and the exact coordinates of each place. �is

standardizes small perturbations in the reported coordinates of places across NHGIS, GNIS, and

Google Maps. In our crosswalks, we include �ags that indicate at which step each match is made,

so that researchers can exclude these imputed matches as desired. �e Data Appendix includes

more details on all of these steps.

A�er this procedure, there are 708,928 unique census year -by- cleaned location observations
9�e match score is calculated using the string-matching process of the fuzzywuzzy library in Python. It combines

several methods for calculating a measure of ‘distance’ between potential strings, normalizing by string length.
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that we extract from the raw census data. Of those year-place observations, we fail to geocode

42,155 places (6% of the total number). 390,913 places (55%) match to NHGIS places in our �rst

a�empt, and an additional 198,491 (28%) match to the most common types of GNIS places in our

�rst a�empt. 14,690 (2%) match to NHGIS and GNIS places using slight variation in fuzziness of

match requirements, and an additional 54,403 (8%) match through our two enumeration district

imputation steps. By ensuring time-consistency of identically-named place names across census

years, we geocode an additional 7,357 (1%) of places. And lastly, we geocode 919 (0.2%) of places

using Google Maps.

Our �nal crosswalks create consistent longitudes and latitudes of each person’s town, city,

or unincorporated place of residence. To increase the usability of our crosswalks, we also assign

modern-day county and state identi�ers to each geocoded place. �is provides a consistent mea-

sure of county and state of residence for all geocoded observations. Our crosswalks provide an

accurate and consistent way to identify the county of residence for the vast majority of U.S. res-

idents, complementing recently-constructed spatial harmonizations of changing county borders

over time (Hornbeck, 2010; Perlman, 2014; Ferrara, Testa, and Zhou, 2022).

3 Results and Application

3.1 Geocoding Rates

In this subsection, we describe the coverage of our geocoded data across decades and compare

our match rates to existing public data. In all years, our match rates allow researchers to observe

more sub-county locations relative to previously available sources. To see this, we calculate the

share of observations in public census data that can be geocoded using extracts from IPUMS.

In particular, we compare our cities to observations with non-missing IPUMS standardized city

variables “CITY” or (for 1940 only) “PLACENHG.”

We show our match rate comparison in Figure 1, which plots the percent of census observa-
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tions with valid sub-county locations across years, for both our crosswalks and publicly available

IPUMS data. We successfully match 56-99 percent of observations to a sub-county location, de-

pending on the census year. Our match rate generally increases over time, particularly when

the census moves to the collection of individual-level data in 1850. Match rates surpass 91% in

all years from 1860–1940.10 Our match rate di�ers across years due to the various methods that

censuses used to collect information on geographical locations. For example, the 1870 census

has signi�cantly more geographical digitized information relative to prior years. In most cases,

our failure to link a sub-county location to a valid latitude and longitude occurs when there is

no geographical information beyond county recorded on an enumeration district and we have

limited information on adjoining enumeration districts.11

3.2 Example: Waukesha County

To illustrate the value of our data and approach, consider Waukesha County in Wisconsin. Today,

Waukesha County is Wisconsin’s third-largest county by population and covers 581 square miles.

�e county is geographically diverse: its eastern portion is an extended suburb of Milwaukee

and is heavily commercialized with manufacturing and service industries, while the western and

southern portions are rural and contain signi�cant farmland.

In 1930, Waukesha County had 52,000 people. In publicly available 1930 census data, the

only available sub-county location is the county seat, Waukesha.12 In 1930, the city of Waukesha

contained roughly 35% of the county population, leaving 65% of the city lacking a valid sub-

county location. By contrast, we assign 100% of the 1930 Waukesha County population to a valid
10An observation is a household in 1790-1840. Starting in 1850, an observation is a person. We focus on census

observations and not the count of people throughout this paper because the decennial population censuses did not
collect information about the slave population in all years.

11Conceptually, it is possible to map these places manually by consulting the original enumeration district maps,
as is done by Connolly (2021) for a set of 1920 cities. Unfortunately, since enumeration district boundaries change
over time, this procedure would need to be repeated for every decade in our sample. �ese unnamed locations tend
to be small rural areas.

12�is location starts to be identi�ed in the public census microdata from IPUMS in 1900. Before this, there is no
city identi�ed in this county in the public census data.
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sub-county location.13

In Figure 2, we illustrate the coverage of our geocoded 1930 places using a map of modern-

day Waukesha County locations. �e city of Waukesha—framed in black—is the only sub-county

1930 location in public census data. By contrast, all of the cities highlighted in blue are also

included in our new geolocated place data. �is includes extremely small locations in 1930—for

instance, Wales had only 123 residents, while Dousman had 256 residents. Figure 2 highlights that

our new data shows the geographic diversity of Waukesha County. Even in 1930, the jobs and

industries of the eastern portions of the county were changing and becoming more industrialized

relative to the more rural parts of the county. With our location data linked to publicly-available

IPUMS data, researchers can observe and study the persistence of these within-county di�erences

throughout history.

3.3 Clustering

While our place-level longitude-latitude mappings are comprehensive, these places are not de-

�ned consistently over time. To address this limitation, we use an iterative density-clustering

approach to map our 69,393 unique locations across the 150 year period of 1790–1940 to a smaller

set of 42,133 consistently-de�ned places. While most places are distinct and not combined in this

step, larger cities like Atlanta, Pi�sburgh, and Chicago have borders that expand over time as

they merge with other towns and experience high levels of in-migration. Our method captures

these expanding borders, allowing us to consistently measure features of these cities over time.14

13Our match rates for this example are similar if we focus on other census years with individual microdata. In 1940,
IPUMS data also captures some of these sub-county locations with their newly constructed “PLACENHG” variable.

14We cluster places consistently over time so that researchers can use our cluster identi�ers to track city growth,
shrinking urban borders, mergers, and annexation. For example, in 1907 Pi�sburgh annexed nearby Allegheny City
against the wishes of a majority of Allegheny residents who, in repeated referenda, rejected the annexation a�empt.
�e annexation was forced on Allegheny by Pennsylvania, whose legislators passed a law allowing a majority of the
combined voters from Pi�sburgh and Allegheny City to determine the results of the annexation, even if a majority
of the voters in the targeted city (Allegheny City) rejected the annexation a�empt. For more discussion of this and
related annexations, see Lonich (1993). Researchers interested in the distinction between Pi�sburgh and Allegheny
City can use our data to di�erentiate those two places in years where the places were enumerated distinctly. But
as the cities merged, the de�nition of Pi�sburgh and Allegheny became amorphous, and our clusters provide a
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We iteratively cluster any neighboring places that are within three miles of each other within

census years and across census years. We also cluster together any two places i and j that are

within 100 ∗Kcluster ∗max{sharepopi, sharepopi} miles of each other, where sharepopi is the

fraction of the population in decennial census data that we map to place i across all years (1790–

1940), assigning equal weight to each year. For our main results, we rely on a constant Kcluster

of 5. �is choice of clustering allows large cities to be combined with more of their suburbs. For

example, Chicago contains roughly 2.5% of the people in decennial census microdata from 1790-

1940. When Kcluster = 5, Chicago will be close neighbors with any smaller place within 12.5

miles of it. We cluster places consistently over time by de�ning each cluster to be the connected

component of all close neighbors for each place.

In Figure 3, we map all of our consistently de�ned places. We color each cluster to re�ect close

neighbors. Our individually-geocoded places re�ect the geographic distribution of people in the

United States from 1790–1940, highlighting the densely populated New England corridor. Our

clusters show consistently-de�ned metropolitan areas that can spread across state and county

borders. We include these cluster de�nitions in our crosswalks so that other researchers can use

them.

To further show the value of our clusters, in Figure 4 we focus on four representative states

across di�erent census regions and highlight the individual geocoded places, our consistently-

de�ned clusters, and the �ve largest clusters in each state. �e top le� panel shows that our

clustering combines the Birmingham, Alabama suburbs into one cluster. In the top right panel,

Miami and Tampa Bay, Florida are combined into distinct clusters with their nearby suburbs. In

the bo�om panels, the dense west coast of Oregon is clustered into a small number of metropoli-

tan areas. In Pennsylvania, Pi�sburgh and Philadelphia form distinct clusters.15

In Figure 5, we show the same four states with modern-day county borders. �ese maps show

the value of our geocoded places to researchers hoping to analyze spatial variation in access

time-consistent approach to measuring the number and type of people living in the Pi�sburgh area over time.
15Figures A1–A4 show full-page versions of these state-level �gures for easy readability.
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to policies or spatial outcomes in a historical se�ing. We geocode an average of 23 places per

modern-day county in the U.S. �is granular classi�cation of locations gives researchers the tools

to analyze distance-based access to local programs, within-county border discontinuity designs,

and urban/rural migration pa�erns within counties.16

Our preferred value of Kcluster in the above speci�cations is 5 because that allows large cities

to subsume close suburbs, but it maintains the geographic distinctness of nearby small places. We

also provide alternative clusters for di�erent values of Kcluster so that researchers can choose that

clustering that best �t their analysis based on the level of geographical variation in which they

are interested. In Figure 6, we show our clusters for Washington with two levels of aggregation:

Kcluster = 5 and Kcluster = 500. With the less aggressive level of aggregation, Sea�le and Evere�

(29 miles away from each other) form distinct clusters with their respective surrounding suburbs

and nearby towns. With more aggressive clustering (Kcluster = 500), the Sea�le and Evere�

clusters merge and become one larger Sea�le metropolitan area and the Spokane cluster absorbs

more nearby towns.

3.4 Population Dynamics

To showcase our new crosswalks, we use our preferred clustered places to examine the size dis-

tribution of historical places in the U.S. and place-speci�c population growth. A large literature

in urban economics models and empirically quanti�es the formation and growth of cities. �is

literature focuses on two ‘laws’: Zipf’s Law, which states that there is a linear relationship at the

city-level between log(population) and log(rank) of population, and Gibrat’s Law, which states

that the population growth rate is independent of city size. Gabaix (1999) showed that if a set of

cities grow independently of initial city size, following Gibrat’s Law, then the steady-state size

distribution will follow Zipf’s Law. Testing these predictions using high-quality historical data

gives urban economists the ability to evaluate theories of long-run city population dynamics.
16Figures A5–A8 show full-page versions of these state-level �gures for easy readability.
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We use our geocoded historical places to evaluate these two laws. In Figures 7 (for 1870

places) and 8 (for 1940 places), the top panel shows the relationship between log(population)

and log(rank) for IPUMS-de�ned cities and the bo�om panel shows the same relationship for

our geocoded places. We focus on places with populations over 20,000. In the IPUMS-based top

panels, there is a deviation from Zipf’s Law at the right tail of the city size distribution in both 1870

and 1940—the most populous cities look smaller than what Zipf’s Law predicts if we use IPUMS’s

city classi�cation. In the bo�om panel of each �gure, we plot the same log(population)-log(rank)

graph with our geocoded and clustered places. Using our places, we match the predictions of

Zipf’s Law almost exactly. Our decision to cluster places combines large cities with their suburbs,

and these clustered places match the predictions of Zipf’s Law.

In Figures 9 and 10, we extend Zipf’s Law to all tracked places in 1870 and 1940 respectively.

In the top panels, we show the IPUMS-based log(population)-log(rank) plot and in the bo�om

panels, we present the log(population)-log(rank) plot for all of our geocoded clusters. In both

years (1870 and 1940), we see sharp deviations from Zipf’s Law for places with fewer than 500

residents in our geocoded data. Focusing on the smallest places, we see that they are underrep-

resented in our sample of places relative to the predictions of Zipf’s Law. In 1870, we do not see

a similar pa�ern in IPUMS’s data because the publicly available crosswalks do not contain the

locations of small cities and towns. In 1940, when IPUMS coverage is higher, we do see the same

deviation from Zipf’s Law for smaller cities and towns.

In Figure 11, we compare the prediction of Gibrat’s Law in IPUMS’ city data (panel A) and

our geocoded clusters (panel B). We focus on place-level population growth from 1870 to 1940 for

places with populations less than 50,000 in 1870.17 IPUMS consistently tracks very few cities over

this time period, but for the 144 cities with a population over 10,000 in 1870, we see a close match

to the predictions of Gibrat’s Law–city growth from 1870 to 1940 seems uncorrelated with the
17�e results are unchanged if we include the largest cities, but including the largest cities in the panels makes

it more di�cult to see the non-monotonic population growth rate dynamics for cities with lower initial population
levels in 1870.
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initial 1870 population. Cities of all sizes quadrupled in size between 1870 and 1940. But in our

geocoded places we see a strikingly di�erent conclusion. We show that population growth rates

were U-shaped over this 70-year period. �e population of smaller places grew almost nine-fold

on average while the population of the largest places more than quadrupled. But for mid-sized

places with populations around 1,000 people, we see much smaller growth rates around 150%.

�is is a pa�ern that also exists at the county level, as shown by Desmet and Rappaport (2017).

We are the �rst to show these historical pa�erns at the town and city level for all places in the

United States.

4 Discussion and application to additional datasets

So far, we have discussed our method and applications exclusively in the context of the historical

US decennial censuses. However, much of the code that we release can be used to geocode other

sources of historical data. In addition, the steps that we use can serve as a conceptual guide for

other researchers. However, like all methodological contributions, our approach will apply very

well in some cases and less well in others. In this subsection we discuss these tradeo�s.

Our current code is optimized to geocode historical US cities and townships. It is most eas-

ily applied to other documents that contain the same level of geographic detail. Two important

examples are patent documents and birth/death certi�cates. Both typically contain the city of

the invention or event, and both — because of the limits of modern OCR so�ware — are o�en

measured with some error. Our code can clean these location strings and fuzzily match them

to historically accurate geocoded places. All that is required as an input is a vector of possible

strings for each document. Since our code was developed using US census data, it may need to

be modi�ed: For example, in the censuses there are predictable strings that need to be cleaned

before geocoding (e.g., “WARD”, “DISTRICT”). To the extent that di�erent datasets contain dif-

ferent strings that need cleaning, this code should be adjusted. Otherwise, our procedure has few
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census-speci�c steps.

By contrast, because of our se�ing our code cannot directly geocode sub-city US data (e.g.,

streets or blocks) or locations outside the US. However, with appropriate changes, the structure of

our code could be used in these cases. For example, to geocode streets, one could take information

on raw streets in the censuses, clean them using our algorithms, and match them to contemporary

street databases (instead of NHGIS/GNIS place points). Similarly, our approach and code can be

generalized to other countries, though many methodological choices will need to be made as a

function of the underlying strings and location databases available for that country.

Beyond our code, our geocoded census locations can also be used in methodological projects.

For example, researchers linking birth certi�cates to decennial census microdata face the lim-

itation that within a state or county, there can be multiple people with similar names. Using

our geocoded sub-county locations to aid in those links can increase match rates and lower false

positive rates.

5 Conclusion

Researchers o�en use place-level data to measure the causal e�ects of local policies and to de-

scribe historical trends. �ese analyses are o�en done at the county- or state-level because it is

challenging to link individuals to consistently de�ned local places across census years. In this

paper, we describe and release public crosswalks linking the vast majority of 1790-1940 census

respondents to longitudes and latitudes. �ese crosswalks allow analysts to explore sub-county

research questions and trends using public census data.

We present two applications of our crosswalks to demonstrate their value. First, we iteratively

cluster geocoded places with close neighbors, producing a consistent de�nition of place. �is

application addresses the common concern that regularly-updated county borders and shi�ing

municipal boundaries make it di�cult to match and compare places over time. Second, we test
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the predictions of Zipf’s Law and Gibrat’s Law in a historical context, �nding clear deviations

from theoretical predictions about the city size and city growth distribution. While these �ndings

have been observed in more aggregated data, we are the �rst to illustrate these pa�erns over long

time periods with national data on “places”.

�e most important application of this paper is the method itself. Researchers spend signi�-

cant and o�en-duplicated time standardizing common spatial datasets, particularly when work-

ing with historical sources. We hope that the process we present in this paper helps researchers

link other datasets that include unstructured place names—for example, patent data or birth and

death records—to sub-county geocodes.
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Figure 1: Census observations with valid sub-county locations, by data source and census year
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Notes: �is �gure shows the share of census observations with a valid sub-county location in each census year
separately for publicly available IPUMS census data and the newly constructed Census Place Project data. An
observation in 1790-1840 is a household. Starting in 1850, each observation is a non-slave member of the
household. �e 1890 census manuscripts were lost in a �re.
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Figure 2: Waukesha County Wisconsin, modern map with 1930 census data coverage highlighted

Notes: �is �gure is a modern-day map of Waukesha County, accessed via Google Maps. Only the city of Waukesha
(highlighted in black) is identi�ed in public 1930 census data. Our geocoded data identi�es all the cities highlighted
in blue, in addition to smaller areas not labeled on the map
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Figure 3: All clustered places

Notes: �is �gure maps all of our 69,393 unique places across the years 1790–1940 a�er assigning the places to
consistent clusters (with Kcluster = 5). Places within a cluster are given the same color, highlighting large colors
surrounding major metropolitan areas (like New York City).
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Figure 4: State-level maps of clustered places
Alabama Florida

Oregon Pennsylvania

Notes: �is �gure maps our geocoded places in four states: Alabama, Florida, Oregon, and Pennsylvania. We
highlight the �ve largest clusters in each state (with Kcluster = 5).
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Figure 5: State-level maps of clustered places with county borders
Alabama Florida

Oregon Pennsylvania

Notes: �is �gure maps our geocoded places in four states: Alabama, Florida, Oregon, and Pennsylvania. We
highlight the county borders in each state to emphasize the granularity of our geocoded places relative to the
larger counties.
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Figure 6: Clusters in Washington State with di�erent levels of Kcluster

Kcluster = 5

Kcluster = 500

Notes: �is �gure maps our geocoded places in Washington with more conservative clustering (Kcluster = 5) and
more aggressive clustering (Kcluster = 500). �e largest di�erence is in the implied size of the Sea�le metropolitan
area. 24



Figure 7: Zipf’s Law for 1870 places with population 20,000+ (CPP vs. IPUMS)

Notes: �is �gure plots log(population) vs. log(rank) for all cities with population greater than 20,000 in 1870
labeled by IPUMS (top panel) and in our geocoded places (bo�om panel).
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Figure 8: Zipf’s Law for 1940 places with population 20,000+ (IPUMS vs. CPP)

Notes: �is �gure plots log(population) vs. log(rank) for all cities with population greater than 20,000 in 1940
labeled by IPUMS (top panel) and in our geocoded places (bo�om panel).
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Figure 9: Zipf’s Law for all places in 1870 (IPUMS vs. CPP)

Notes: �is �gure plots log(population) vs. log(rank) for all cities in 1870 labeled by IPUMS (top panel) and in our
geocoded places (bo�om panel).
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Figure 10: Zipf’s Law for all places in 1940 (IPUMS vs. CPP)

Notes: �is �gure plots log(population) vs. log(rank) for all cities in 1940 labeled by IPUMS (top panel) and in our
geocoded places (bo�om panel).
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Figure 11: Gibrat’s Law (IPUMS vs. CPP)

Notes: �is �gure tests Gibrat’s Law by plo�ing the relationship between population growth rates between 1870
and 1940 (y-axis) and baseline 1870 population levels for places labeled by IPUMS (top panel) and in our geocoded
places (bo�om panel). We plot binsca�ered growth rates. We focus on places with population less than 50,000 to
emphasize the di�erence between the two approaches for small cities and towns. �e y-axis units is percent
growth, so a value of 2 indicates that a place tripled in size from 1870 to 1940.
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A Data Appendix

�is appendix describes that data and approach that we use to standardize place names in the
historical censuses.

• Place name variables in IPUMS data:

1. 1790–1820: township
2. 1830: general township orig
3. 1840: locality
4. 1850: stdcity, us1850c 0043, us1850c 0053, us1850c 0054, us1850 0042
5. 1860: us1860c 0040, us1860c 0042, us1860c 0036
6. 1870: us1870c 0040, us1870c 0042, us1870c 0043, us1870c 0044, us1870c 0035, us1870c 0036
7. 1880: mcdstr, us1880e 0071, us1880e 0069, us1880e 0072, us1880e 0070
8. 1890: stdcity, us1900m 0045, us1900m 0052
9. 1900: stdcity, us1900m 0045, us1900m 0052

10. 1910: stdcity, us1910m 0052, us1910m 0053, us1910m 0063
11. 1920: stdmcd, stdcity, us1920c 0057, us1920c 0058, us1920c 0068, us1920c 0069
12. 1930: stdmcd, stdcity
13. 1940: stdcity, us1940b 0073, us1940b 0074

• State variables in IPUMS data:

1. 1790–1820: fullstate (name)
2. 1830: self residence place state (name)
3. 1840: fullstate (name)
4. 1850: stateicp (code)
5. 1860–1870: state�p (code)
6. 1880: stateicp (code)
7. 1900–1940: state�p (code)

• County variables in IPUMS data:

1. 1790–1820: county (name)
2. 1830: self residence place county (name)
3. 1840: county (name)
4. 1850: stcounty (code)
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5. 1860–1870: countyicp (code)
6. 1880–1930: stcounty (code)
7. 1940: countyicp (code)

Location cleaning procedure:

• Substitute mt. (and mt followed by a space) with mount, and st. with saint. Note that we
cannot simply substitute st with saint because sometimes place names do end in st, but if
the string starts with st followed by a space then we substitute it with saint

• Substitute Indian reservation with reservation to match external sources of place names

• Remove anything in parentheses (e.g., (i), (ii), etc.)

• Remove numbers, commas, question marks, periods, parentheses, and slashes (/)

• Remove range(s) if the range is preceded and followed by a space or if it it’s at the end of
the string and preceded by a space

• Remove substrings that match any of the following (note the space at the end of some
strings): ’police jury’, ’justice ward’, ’court house’, ’militia district’, ’civil district’, ’justice
precinct’, ’election district’, ’undetermined’, ’not stated’, ’ village’, ’tract’, ’ ward’, ’assem-
bly district’, ’district’, ’no’̇, ’precinct’, ’subdivision’, ’beat’, ’plantation’, ’census designated
place’, ’post o�ce’, ’township of ’, ’town of ’, ’borough of ’, ’city of ’

• Remove ward or township followed by a space if it’s at the beginning of the string

• If the place name at this point contains “division” return an empty string (note that at this
point we’ve already taken care of subdivisions etc.)

• Remove “[east, west, south, north] side” or “[east, west, south, north]ern side” from the
string

• Substitute multiple spaces with only one

• If at this point the place name string has less than two characters or corresponds to town-
ship(s) or ward(s) return an empty string

• Trim white spaces

• Force all le�ers to lowercase

Extra Cleaning for Round 3:

• Drop hyphens (-)

• Drop cardinal points (south, north, east, west) and their adjectives (southern, northern,
eastern, western)
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• Drop township and point when preceded by a space

• Remove all the spaces to standardize our merge process

Geotag procedure:

• Load GNIS data

• Load county shape �le from NHGIS. We standardize IPUMS county variables to match 3-
digit FIPS variables per IPUMS documentation. IPUMS county variables are usually iden-
tical to FIPS standards. An exception is Maryland, where IPUMS county identi�ers are
shi�ed relative to FIPS codes. We manually adjust these codes to match shape�les

• For all the decades at and a�er 1900, we load the point place �les downloaded from NHGIS.
We standardize the place names to match the format of our raw census place strings.

• We determine the order in which we consider the raw census place name variables by
ordering the variables from most unique places to least unique places within each year.
�e reason for this is that the more unique names there are, the more disaggregated this
variable is likely to be. �e more standardized the place name is, the fewer unique values
of places we see in the raw �les (for example, Charlestown and Boston may be combined
into one place called Boston in some of the place name variables).

• We have lexicographic preferences over the sequence of census place names. In other
words, we have three matching rounds that we apply to the �rst place name in our or-
dered list, if do not get a match we move to the second one, and so on.

• For decades at and a�er 1900, we try to match our census place names to NHGIS and GNIS
places. �ere are three matching rounds:

– Round 1: �nd the place name in the NHGIS/GNIS places �le that is most similar to the
one in the census microdata. We require that the potentially matching NHGIS/GNIS
place needs to be in the same state and county as the place name from the IPUMS
�le (using historical boundaries) and also that the string matching score using the
FuzzyWuzzy package in Python is ≥ 95.

– Round 2: same thing as above with the slight di�erence that the matching require-
ment is no longer a FuzzyWuzzy score ≥ 95 but a Levenshtein distance of 1. Since
this threshold does not depend on the length of the place name, it is a less stringent
requirement for shorter place names (but a stricter requirement for long ones). Note
that here if there are multiple cities with a Levenshtein distance of 1, then we skip
this step for that place.

– Round 3: �e same as round 1, with the exception that we apply the extra cleaning
described above to the raw place names of cardinal references (e.g., strip Township,
cardinal points, etc.).
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• We begin by a�empting to �nd census places in the NHGIS place point data, and we then
proceed to look in the GNIS �le, where we consider the following feature classes in order:
populated place, locale, civil, census, area, beach, harbor, island, military, mine, park, post
o�ce, unknown, basin, bay, falls, rapids, reserve, reservoir, ridge, spring, stream, valley.
�e classes are ordered in terms of importance. �at is, we �rst try to match the census
place names to cities in the GNIS feature class ‘populated place’, then we match the census
place names to locales, and so on.

• For each class of places in GNIS, we �rst drop the “distant duplicates,” which we de�ne as
all the places that have the same exact name and are more than 5km apart, because we are
unsure which place to match to. Note that if two places have the same name and are within
5km, we keep the �rst listed GNIS place.

• We look for matches in the NHGIS and GNIS features (in the order described above), �rst
completing round 1 for NHGIS places, GNIS populated places, GNIS locales, GNIS civil
features,… until we match GNIS valleys. We then proceed to round 2, searching for NHGIS
places, then GNIS populated places,… We then proceed to round 3.

• We have an extra step for the GNIS data where we take all places with duplicates more
than 5km apart and we a�empt to match our raw census place name to the GNIS duplicate
in the correct county. If there are multiple matches within the same county, we keep the
match with the lowest latitude.

• For 1850 data and all census years at or a�er 1880, the census data contains enumeration
districts and we use them to impute the coordinates of towns that we are not able to geocode
in the previous steps. �e procedure works as follows:

– if an as-of-yet ungeocoded place is in the same state, county, and enumeration dis-
trict as one (or more) place with known latitude and longitude, we assign the place
name the same longitude and latitude as the already geocoded place (if multiple places
within the same enumeration district have already been successfully geocoded, we use
the mean of the previously geocoded coordinates);

– if an as-of-yet ungeocoded place is in an enumeration district that is numerically
between two (non-necessarily adjacent) enumerations districts that contain already-
geocoded places and if the distance between these two enumeration districts is smaller
than 50km, then we assign to the ungeocoded place the mean of the means of the
already geocoded latitudes and longitudes of places in those enumeration districts.
Note that this corresponds to the midpoint between the two mean coordinates of the
geocoded enumeration districts. Note that we always use the average. For example, if
we have enumeration districts 1, 2, 3, 4 and we have geocoded coordinates for 1 and 4
that are within 50km of each other, then enumeration districts 2 and 3 would receive
the same coordinates, equal to the average of the coordinates of geocoded places in
enumeration districts 1 and 4.
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• We then have a second round of matching where we take as-of-yet ungeocoded places and
search for them on Google Maps, taking the resulting longitude and latitude a�er con�rm-
ing that that Google-based longitude and latitude is in the correct historical county.

• We then have a penultimate round of matching that uses 1910 counties as our reference
geography to test whether cities fall within the right county boundaries. �e Census data
seem to use some county or state names before they were o�cial (e.g., West Virginia in
1860). For this reason, when comparing the coordinates that we obtain through our match-
ing procedure and the location on a contemporaneous map, we sometimes get false neg-
atives (i.e., towns that are outside a county although they should fall within). �is step is
meant to �x this problem by using a map with state and county boundaries that should be
somewhat stable.

• Lastly, we take all geocoded places and look for towns in a speci�c state that are unique in a
given year but geocoded in only some years and not others. �is can happen, for example, if
the enumeration district imputation step �nds a place that was otherwise missing in other
years. We take the longitude-latitude for that place in the geocoded year and assign it to
the ungeocoded place with the same name in other years.
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Figure A1: Alabama: Large map of clusters

Notes: �is �gure maps the geocoded places in Alabama, highlighting the �ve largest clusters (with Kcluster = 5)
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Figure A2: Florida: Large map of clusters

Notes: �is �gure maps the geocoded places in Florida, highlighting the �ve largest clusters (with Kcluster = 5)
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Figure A3: Oregon: Large map of clusters

Notes: �is �gure maps the geocoded places in Oregon, highlighting the �ve largest clusters (with Kcluster = 5)
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Figure A4: Pennsylvania: Large map of clusters

Notes: �is �gure maps the geocoded places in Pennsylvania, highlighting the �ve largest clusters (with
Kcluster = 5)
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Figure A5: Alabama: Large map of clusters, with county borders

Notes: �is �gure maps the geocoded places in Alabama, highlighting the county borders in Alabama to emphasize
the large number of geocoded places in our data relative to the smaller number of counties. Sets of adjacent places
within the same cluster (Kcluster = 5) are mapped with the same color.
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Figure A6: Florida: Large map of clusters, with county borders

Notes: �is �gure maps the geocoded places in Florida, highlighting the county borders in Florida to emphasize the
large number of geocoded places in our data relative to the smaller number of counties. Sets of adjacent places
within the same cluster (Kcluster = 5) are mapped with the same color.
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Figure A7: Oregon: Large map of clusters, with county borders

Notes: �is �gure maps the geocoded places in Oregon, highlighting the county borders in Oregon to emphasize
the large number of geocoded places in our data relative to the smaller number of counties. Sets of adjacent places
within the same cluster (Kcluster = 5) are mapped with the same color.
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Figure A8: Pennsylvania: Large map of clusters, with county borders

Notes: �is �gure maps the geocoded places in Pennsylvania, highlighting the county borders in Pennsylvania to
emphasize the large number of geocoded places in our data relative to the smaller number of counties. Sets of
adjacent places within the same cluster (Kcluster = 5) are mapped with the same color.
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